Target-fencing para inspeções em linhas elétricas com aeronaves pilotadas remotamente

Target-fencing para inspeções em linhas elétricas com aeronaves pilotadas remotamente

João Gomes-Mota, Sandra Antunes, Albatroz Engenharia

Este trabalho propõe um procedimento cuidadoso e seguro de inspeções de linha de eléctricas com um sistema de aeronaves pilotadas remotamente (VANT) com base na dupla utilização dos sensores de carga útil: O objectivo da missão e conexão com controladores autónomos de "ligar" a aeronave às infra-estruturas.

1. Motivação

Os autores têm estado envolvidos com a manutenção de linhas elétricas durante 12 e 7 anos, respetivamente. A inspeção de linha elétricas é um método de manutenção preventiva para a deteção precoce de peças com desgaste ou com defeito nas linhas de energia, riscos ambientais em torno da linha e monitorização do desenvolvimento da vegetação na faixa de servidão. Na Europa e na América do Norte, helicópteros com uma equipa especializada são o vector preferencial para executar esta tarefa, assim como em muitos outros países. Isto requer um voo próximo das linhas elétricas a uma velocidade reduzida e, em caso de linhas de distribuição rurais, voar rente ao solo e logo acima da copa das árvores (um operador afirma estar a viver durante “50 anos a 50 pés” das linhas e também do solo).

Nos últimos anos, as preocupações com a segurança, o ruído e os custos de operação, a um nível mais baixo, e inovações em comunicações sem fio, aeronáutica, robótica e interfaces homem-máquina a um nível mais alto, levaram a ter em consideração um sistema de aeronaves pilotadas remotamente [Remotely Piloted Aircraft Systems - RPAS] como uma alternativa aos helicópteros para inspecionar linhas elétricas. No entanto, se os pilotos de helicóptero são treinados para se manterem longe das linhas elétricas, todos os manuais de operação dos RPAS são inflexíveis: manter-se afastado de todos os tipos de linhas elétricas. Para realizar inspeções de manutenção de linha elétricas, a exigência é o oposto: manter-se sempre perto das linhas de energia.

 

2. Introdução

A maioria das diretrizes e regulamentos para operações civis com RPAS enfatizam a necessidade de segurança. Em termos de segurança, a principal preocupação é a proteção das pessoas, propriedade e o meio envolvente no solo, e em segundo lugar a aeronave não tripulada [UAV]1.  Permissões para realizar missões além da linha de vista [BLOS] são raras e vêm com um quadro mais apertado de restrições.

Um caminho apresentado pela FAA para discussão pública é o “geo-fencing” do UAV, através de prova de que a aeronave não tripulada pode ser confinada a um volume definido por coordenadas geográficas e limites máximos acima do nível do solo e que manter-se-á dentro deste volume pelos seus próprios meios.  Para provar a capacidade do “geo-fencing”, o UAV deve lidar com o fracasso, degradação ou a interferência nefasta dos sinais do Sistema de Navegação Global por Satélite  [GNSS] (por uma questão de segurança) e a degradação ou a perda de comunicações para a estação terrestre e piloto. Sob tais constrangimentos, utilizar um RPAS para efetuar uma inspeção de uma linha elétrica, ou qualquer outra infra-estrura linear, para este caso, exigirá uma sucessão de NOTAM (Notice to Airmen ou circular de informação aeronáutica), fechando pequenos volumes de espaço de ar que contém o volume de confinamento em torno dele e durante a inspeção.

 

3. Contribuições

Os autores propõem uma extensão deste princípio, no caso dos RPAS a inspecionar linhas elétricas. Como a tarefa de inspeção envolve sensores capazes de medir distâncias entre objetos no espaço tridimensional, tais sinais poderão ser utilizados em tempo-real para controlar a distância desde os UAV até ao alvo de inspeção (sendo esse uma linha elétrica, um oleoduto, ou outro qualquer). A tecnologia mais comum para este propósito é o LiDAR acoplado com um GPS e a um AHRS (Attitude and Heading Reference Systems). A maioria dos prestadores de serviços de inspeção a partir de helicópteros não processam tais dados em tempo-real devido à complexidade e esforço computacional que necessitam. Contudo, a empresa dos autores apresentou o PLMI (Power Line Maintenance Inspection) em 2007, que é um sistema para helicópteros cuja novidade para o mercado inclui as medições de distância em tempo-real às linhas, ao solo e a todos os objetos do meio envolvente, melhorando em primeiro lugar a segurança da tripulação e em segundo lugar a qualidade do serviço.

Se tais ferramentas forem combinadas com um modelo de supervisão dentro do piloto automático de um UAV, isso deverá assegurar que o UAV mantém-se dentro do volume específico do alvo e ao mesmo tempo certificar-se de que não se aproxime demasiado, para proteger as linhas e o UAV de contacto. Tendo como inspiração o “geofencing” os autores chamam-no de “target-fencing”.

 Enquanto a estrutura for continua, o UAV pode segui-la, baseando-se no target-fencing para restringir o UAV a uma distância segura do alvo e dentro do espaço aéreo confinado. Isto pode ser combinado com o geofencing para se aproximar e afastar da infraestrutura e para fornecer mapas para auxiliar a navegação e pontos de passagem seguintes. No caso de haver descontinuidades na infraestrutura (tais como cabos subterrâneos e oleodutos ou túneis rodoviários ou ferroviários), o UAV iria contar apenas com o geo-fencing, possivelmente associado com um comportamento de seguir as copas (ou o modelo digital de superfície a ser gerado em tempo-real), até que infraestrutura recomece e este volte a segui-la.

O artigo deve discutir os aspetos técnicos da implementação do "target-fencing" aplicada a UAV tipo multicopters. Deve ser introduzido a sua aplicação a UAV de asa fixa.

 

 

 

 

 

 

 

 

 

Target-fencing